Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Mem. Inst. Oswaldo Cruz ; 114: e190017, 2019. tab, graf
Article in English | LILACS | ID: biblio-1012676

ABSTRACT

BACKGROUND Only benznidazole (Bnz) (1) and nifurtimox (Nfx) (2) are licensed for the treatment of Chagas disease although their safety and efficacy profile are far from ideal. Farmanguinhos from Fiocruz has developed seven nitroimidazole compounds (4-10) analogs of megazol (3). OBJECTIVES To evaluate whether the genotoxic effect of 3 was abolished in the seven nitroimidazoles (4-10) analogs using the in vitro alkaline comet assay (CA) and the in vitro cytokinesis-block micronucleus assay (CBMN) in whole human blood cells (WHBC) and correlate this effect with their trypanocidal activity using bloodstream trypomastigote forms of Trypanosoma cruzi. METHODS The toxicity of 3-10 to WHBC in the in vitro CA was determined using the fluorescein diacetate/ethidium bromide assay. DNA damage in the in vitro CA was evaluated according to tail size in four classes (0-3) and methyl methane-sulfonate (MMS) was used as a positive control. The cytotoxicity of 3-10 to WHBC in the CBMN was measured using the cytokinesis-block proliferation index and the replication index. The number of the micronucleate cells in 2,000 binucleate cells by experimental group was determined. Mitomycin C and N-deacetyl-N-methylcolchicine were used as positive controls. FINDINGS Compound 3 showed a significant DNA strand break effect through the in vitro CA and highly significant clastogenic and/or aneugenic effect in the CBMN. Compounds 5, 6, 8, 9 and 10 showed negative results in the CBMN and positive results in the in vitro CA, while the inverse effect was observed for 4 and 7. MAIN CONCLUSIONS Compound 10 was the most promising to proceed with the development as a drug candidate in the treatment of Chagas disease showing absence of chromosomal cytogenetic damage and high activity against T. cruzi, about two times higher than 3 and the clinical drug 1.


Subject(s)
Trypanocidal Agents/therapeutic use , Trypanocidal Agents/pharmacology , Nitroimidazoles/therapeutic use , In Vitro Techniques/methods , Mutagenicity Tests/methods
2.
Mem. Inst. Oswaldo Cruz ; 110(4): 492-499, 09/06/2015. tab, graf
Article in English | LILACS | ID: lil-748858

ABSTRACT

Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO 2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.


Subject(s)
Animals , Mice , DNA Damage/drug effects , Nitroimidazoles/chemistry , Nitroimidazoles/toxicity , Salmonella/drug effects , Trypanosoma cruzi/drug effects , Comet Assay , Dose-Response Relationship, Drug , Mutagenicity Tests , Structure-Activity Relationship
3.
Mem. Inst. Oswaldo Cruz ; 109(3): 315-323, 06/2014. tab, graf
Article in English | LILACS | ID: lil-711722

ABSTRACT

Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.


Subject(s)
Animals , Humans , Male , Mice , Nitroreductases/drug effects , Thiadiazoles , Triazoles , Trypanocidal Agents , Trypanosoma brucei brucei/drug effects , Trypanosoma brucei brucei/enzymology , Comet Assay , DNA Damage/drug effects , Enzyme Activation/drug effects , Nitroreductases/metabolism , Parasitic Sensitivity Tests , Structure-Activity Relationship , Thiadiazoles/chemistry , Thiadiazoles/metabolism , Thiadiazoles/pharmacology , Thiadiazoles/toxicity , Triazoles/chemistry , Triazoles/metabolism , Triazoles/pharmacology , Triazoles/toxicity , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanocidal Agents/toxicity , Trypanosoma cruzi/drug effects
4.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 301-310, July 2009. ilus
Article in English | LILACS | ID: lil-520902

ABSTRACT

Chagas disease, which is caused by the intracellular parasite Trypanosoma cruzi, is a neglected illness with 12-14 million reported cases in endemic geographic regions of Latin America. While the disease still represents an important public health problem in these affected areas, the available therapy, which was introduced more than four decades ago, is far from ideal due to its substantial toxicity, its limited effects on different parasite stocks, and its poor activity during the chronic phase of the disease. For the past 15 years, our group, in collaboration with research groups focused on medicinal chemistry, has been working on experimental chemotherapies for Chagas disease, investigating the biological activity, toxicity, selectivity and cellular targets of different classes of compounds on T. cruzi. In this report, we present an overview of these in vitro and in vivo studies, focusing on the most promising classes of compounds with the aim of contributing to the current knowledge of the treatment of Chagas disease and aiding in the development of a new arsenal of candidates with anti-T. cruzi efficacy.


Subject(s)
Animals , Humans , Chagas Disease/drug therapy , Trypanocidal Agents/therapeutic use , Trypanosoma cruzi/drug effects , Naphthoquinones/chemistry , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Pentamidine/chemistry , Pentamidine/pharmacology , Pentamidine/therapeutic use , Propolis/chemistry , Propolis/pharmacology , Propolis/therapeutic use , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology
5.
Mem. Inst. Oswaldo Cruz ; 101(2): 207-211, Mar. 2006. ilus, graf
Article in English | LILACS | ID: lil-430898

ABSTRACT

Propolis has shown activity against pathogenic microorganisms that cause diseases in humans and animals. The ethanol (Et-Blg) and acetone (Ket-Blg) extracts from a Bulgarian propolis, with known chemical compositions, presented similar activity against tissue culture-derived amastigotes. The treatment of Trypanosoma cruzi-infected skeletal muscle cells with Et-Blg led to a decrease of infection and of the intracellular proliferation of amastigotes, while damage to the host cell was observed only at concentration 12.5 times higher than those affecting the parasite. Ultrastructural analysis of the effect of both extracts in epimastigotes revealed that the main targets were the mitochondrion and reservosomes. Et-Blg also affected the mitochondrion-kinetoplast complex in trypomastigotes, offering a potential target for chemotherapeutic agents.


Subject(s)
Animals , Mice , Anti-Infective Agents , Muscle, Skeletal/cytology , Propolis/pharmacology , Trypanosoma cruzi/drug effects , Cells, Cultured , Microscopy, Electron, Transmission , Muscle, Skeletal/parasitology , Host-Parasite Interactions/drug effects , Trypanosoma cruzi/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL